Oligo Synthesis
*: Remember that the scale in nmol does NOT refer to the final yield of the oligo. It refers to the starting material for synthesis. FINAL yield is always measured in OD.
It is not always obvious to determine how many micrograms of oligos you may need for your assays. It is even more complicated to select the right synthesis scale.
How many reactions will I be able to do with 25 nmol PCR primers?
Most PCR reactions use 0.1−0.5 μM primer. Assuming a maximum concentration of 0.5 μM and a reaction volume of 20 μL, each reaction will require 10 pmol oligonucleotide primer.
For a typical 25mer oligonucleotide, 1 OD is equivalent to approximately 4 nmol, or 4000 pmol. Guaranteed yield for a 20 base PCR primer on the 25 nmol scale is 12 nmol.
Therefore, with even the minimum yield from a 25 nmol synthesis, you should be able to perform 1200 PCR reactions.
In summary: minimum guarantee for a 20mer ≈ 12 nmol = 12,000 pmol = 1200 reactions.
Competitive Advantages of Our Oligos synthesis
High-Quality: ISO 9001 & ISO 13485 quality certifications, extremely low mutation and low error rates, in accordance with the stringent quality control standards for oligo synthesis.
Good Stability: Unrivaled control of oligo specifications ensures batch-to-batch consistency and traceability.
Highly-Customizable: Flexible synthesis scales are available; four alternative purification options include Desalt, RPC, PAGE, and HPLC.
Technical Support: Professional teams experienced in oligo synthesis and various modifications offer support throughout the entire production progress.
Cost-Effective: Competitive prices and affordable services.
1. Unmodified DNA Oligo synthesis:
Oligo Length |
Purification |
Amount(OD) |
15-59 bp |
RPC |
1-5 OD |
6-10 OD |
||
11-20 OD |
||
>20 OD |
||
PAGE |
1-5 OD |
|
6-10 OD |
||
11-20 DO |
||
>20 OD |
||
HPLC |
1-2 OD |
2. Unmodified DNA Oligo synthesis:
Oligo Length |
Purification |
Amount(OD) |
61-90 bp |
PAGE |
1-2 OD |
3-5 OD |
||
6-10 OD |
||
11-20 OD |
||
91-120 bp |
PAGE |
1 OD |
2 OD |
||
>2 OD |
||
121-150 bp |
PAGE |
1 OD |
OD and nmol:
Purification |
50 nmol |
100 nmol |
200 nmol |
1 µmol |
5 µmol |
10 µmol |
Desalt |
3 OD |
6 OD |
10 OD |
45 OD |
200 OD |
400 OD |
RPC |
2 OD |
5 OD |
8 OD |
45 OD |
200 OD |
400 OD |
PAGE |
1 OD |
2 OD |
3 OD |
10 OD |
45 OD |
100 OD |
HPLC |
1 OD |
2 OD |
4 OD |
20 OD |
100 OD |
200 OD |
Custom DNA Oligos Modifications
Below Scales are available:
2 OD |
5 OD |
10 OD |
20 OD |
Fluorescent Dyes Labels
The most important fluorescent compounds used to label oligonucleotides are fluorescein and various fluorescein analogs. Fluorescein is a multi-ring aromatic compound that is strongly fluorescent.
* The fluorescent color was calculated with the maximum emission wavelength, for your reference only.
Label Name |
Purifications |
Positions |
Excitation
|
Emission
|
Cy3 |
HPLC |
5′, 3’End |
549 |
566 |
Cy5 |
HPLC |
5′, 3’End |
646 |
669 |
FAM |
HPLC |
5′, 3’End |
495 |
520 |
HEX |
HPLC |
5’End |
535 |
556 |
TET |
HPLC |
5’End |
521 |
536 |
FITC |
HPLC |
5′, 3’End |
492 |
515 |
6-JOE |
HPLC |
5′, 3’End |
529 |
555 |
ROX |
HPLC |
5′, 3’End |
586 |
610 |
TAMRA |
HPLC |
5′, 3’End |
557 |
583 |
Helix Fluor555 |
HPLC |
5′, 3’End |
542 |
558 |
Helix Fluor575 |
HPLC |
5′, 3’End |
546 |
575 |
Texas Red |
HPLC |
5′, 3’End |
588 |
601 |
Quasar 570 |
HPLC |
5′, 3’End |
548 |
566 |
Quasar 670 |
HPLC |
5′, 3’End |
647 |
670 |
Cy3.5 |
HPLC |
5′, 3’End |
581 |
596 |
Cy5.5NS |
HPLC |
5′, 3’End |
678 |
701 |
Cy7NS |
HPLC |
5′, 3’End |
750 |
780 |
CAL Fluor Red 590 |
HPLC |
5′, 3’End |
569 |
591 |
CAL Fluor Red 610 |
HPLC |
5′, 3’End |
590 |
610 |
DABCYL |
HPLC |
5′, 3’End |
453 |
0 |
AMCA |
HPLC |
5′, 3’End |
353 |
455 |
DEAC |
HPLC |
5′, 3’End |
411 |
471 |
MCA |
HPLC |
5′, 3’End |
322 |
390 |
LRB Red |
HPLC |
5′, 3’End |
568 |
583 |
CR6G |
HPLC |
5′, 3’End |
524 |
556 |
Bodi Fluor R6G |
HPLC |
5′, 3’End |
528 |
547 |
NBD-X |
HPLC |
5′, 3’End |
467 |
539 |
California Red |
HPLC |
5′, 3’End |
583 |
603 |
iFluor™ 647 |
HPLC |
5′, 3’End |
649 |
664 |
iFluor™ 660 |
HPLC |
5′, 3’End |
662 |
678 |
iFluor™ 680 |
HPLC |
5′, 3’End |
676 |
695 |
iFluor™ 700 |
HPLC |
5′, 3’End |
685 |
710 |
iFluor™ 710 |
HPLC |
5′, 3’End |
712 |
736 |
iFluor™ 750 |
HPLC |
5′, 3’End |
749 |
775 |
iFluor™ 800 |
HPLC |
5′, 3’End |
801 |
820 |
VIC |
HPLC |
5’End |
538 |
554 |
LC RED-610 |
HPLC |
3’End |
590 |
610 |
LC RED-640 |
HPLC |
3’End |
625 |
640 |
LC RED-705 |
HPLC |
3’End |
685 |
705 |
Bodipy 493/503 |
HPLC |
3’End |
493 |
503 |
Bodipy 564/570 |
HPLC |
3’End |
564 |
570 |
Bodipy 581/591 |
HPLC |
3’End |
581 |
591 |
Bodipy 630/650 |
HPLC |
3’End |
630 |
650 |
Bodipy 650/665 |
HPLC |
3’End |
650 |
665 |
BODIPY R6G |
HPLC |
3’End |
528 |
547 |
SIMA |
HPLC |
5’End |
533 |
557 |
Yakima Yellow Epoch |
HPLC |
5′, 3’End |
530 |
549 |
Dual Labels
Dual-labeled fluorescent probes typically contain a 5′ fluorophore and a 3′ quencher. The probes are often designed to anneal between the upstream and the downstream primer in a PCR reaction. These are commonly used with quantitative PCR, mutation detection, allele determination, and SNP detection.
Label Name |
Purifications |
Positions |
5’FAM-3’TAMRA |
HPLC |
5′, 3’End |
5’HEX-3’TAMRA |
HPLC |
5′, 3’End |
5’TET-3’TAMRA |
HPLC |
5′, 3’End |
5’JOE-3’TAMRA |
HPLC |
5′, 3’End |
5’VIC-3’TAMRA |
HPLC |
5′, 3’End |
5’FAM-3’BHQ1 |
HPLC |
5′, 3’End |
5’VIC-3’BHQ1 |
HPLC |
5′, 3’End |
5’HEX-3’BHQ1 |
HPLC |
5′, 3’End |
5’JOE-3’BHQ1 |
HPLC |
5′, 3’End |
5’TET-3’BHQ-1 |
HPLC |
5′, 3’End |
5’Cy5-3’BHQ2 |
HPLC |
5′, 3’End |
5’Cy3-3’BHQ2 |
HPLC |
5′, 3’End |
5’ROX-3’BHQ2 |
HPLC |
5′, 3’End |
5’TET-3’BHQ2 |
HPLC |
5′, 3’End |
5’JOE-3’BHQ2 |
HPLC |
5′, 3’End |
5’HEX-3’BHQ2 |
HPLC |
5′, 3’End |
5’TAMRA-3’BHQ2 |
HPLC |
5′, 3’End |
5’Texas Red-3’BHQ2 |
HPLC |
5′, 3’End |
5’Quasar 670-3’BHQ2 |
HPLC |
5′, 3’End |
5′-FAM and 3′-BHQ2 |
HPLC |
5′, 3’End |
5’Quasar 670-3’BHQ3 |
HPLC |
5′, 3’End |
5’CY5-3’BHQ3 |
HPLC |
5′, 3’End |
5’FAM-3’ECLIPS |
HPLC |
5′, 3’End |
5’HEX-3′ ECLIPS |
HPLC |
5′, 3’End |
5’TAMRA-3’Eclipse |
HPLC |
5′, 3’End |
5’ROX-3’Eclipse |
HPLC |
5′, 3’End |
5’TET-3’Eclipse |
HPLC |
5′, 3’End |
5’JOE-3’Eclipse |
HPLC |
5′, 3’End |
5’FAM-3’MGB |
HPLC |
5′, 3’End |
5’HEX-3’MGB |
HPLC |
5′, 3’End |
5’TET-3’MGB |
HPLC |
5′, 3’End |
5’JOE-3’MGB |
HPLC |
5′, 3’End |
5’ROX-3’MGB |
HPLC |
5′, 3’End |
5’Texas Red-3’MGB |
HPLC |
5′, 3’End |
5’Quasar 670-3’MGB |
HPLC |
5′, 3’End |
5’VIC-3’MGB |
HPLC |
5′, 3’End |
5’FAM-3’DABCYL |
HPLC |
5′, 3’End |
5’HEX-3’DABCYL |
HPLC |
5′, 3’End |
5’TET-3’DABCYL |
HPLC |
5′, 3’End |
5’JOE-3’DABCYL |
HPLC |
5′, 3’End |
5’TAMRA-3’DABCYL |
HPLC |
5′, 3’End |
5’Texas Red-3’Dabcyl |
HPLC |
5′, 3’End |
5’ROX-3’Dabcyl |
HPLC |
5′, 3’End |
5’CY3-3’DABCYL |
HPLC |
5′, 3’End |
5’Cy5-3’DABCYL |
HPLC |
5′, 3’End |
5’Phos and 3’FAM |
HPLC |
5′, 3’End |
5’TAMRA and 3’Phos |
HPLC |
5′, 3’End |
5’C6-Biotin,3’Biotin |
HPLC |
5′, 3’End |
5’C6-Biotin,3’Cy5 |
HPLC |
5′, 3’End |
5’C6-NH2,3’C3-Fam |
HPLC |
5′, 3’End |
5’C6-NH2,3’Cy3 |
HPLC |
5′, 3’End |
5’Cy5,SS, |
HPLC |
5′, 3’End |
5’Cy5,3’C7-NH2 |
HPLC |
5′, 3’End |
5’Cy5,3’SH |
HPLC |
5′, 3’End |
5’Dabcyl,3’C3-Fam |
HPLC |
5′, 3’End |
5’DlG,3’Digoxin |
HPLC |
5′, 3’End |
5’SH,3’Cy3 |
HPLC |
5′, 3’End |
5’Fam,3’C3-Fam |
HPLC |
5′, 3’End |
5’TAMRA,3’C3-Fam |
HPLC |
5′, 3’End |
Quenchers:
FRET quenching depends on the ability of the fluorophore to transfer energy to the quencher. For this to happen, the emission spectrum of the fluorophore must overlap with the absorption spectrum of the quencher. For a quencher to quench fluorescence from several different fluorophores, it must therefore have a wide absorption spectrum and a high extinction coefficient.
Label Name |
Purifications |
Positions |
DABCYL |
HPLC |
3’End |
TAMRA |
HPLC |
3’End |
BHQ 1 |
HPLC |
3’End |
BHQ 2 |
HPLC |
3’End |
BHQ 3 |
HPLC |
3’End |
MGB |
HPLC |
3’End |
BBQ-650 |
HPLC |
3’End |
TQ1 |
HPLC |
3’End |
TQ2 |
HPLC |
3’End |
TQ3 |
HPLC |
3’End |
TQ4 |
HPLC |
3’End |
TQ5 |
HPLC |
3’End |
TQ6 |
HPLC |
3’End |
QSY 7 carboxylic acid |
HPLC |
3’End |
TQ7 |
HPLC |
3’End |
Affinity Ligands:
Oligo nucleotides can be labeled with biotin or digoxigenin or directly labeled with alkaline phosphatase. A variety of linker arms are available as spacers to minimize steric hindrance.
Label Name |
Purifications |
Positions |
Biotin dT |
HPLC |
5′, 3’End, Internal |
Biotin |
HPLC |
5′, 3’End, Internal |
Biotin-TEG |
HPLC |
5′, 3’End, Internal |
DIG |
HPLC |
5′, 3’End |
Spacers:
Spacer modifications C3, 9, C12 and 18 are used to insert a spacer arm in an oligonucleotide. These modifications can be added in multiple additions when a longer spacer is required.
Label Name |
Purifications |
Positions |
Spacer C6 |
HPLC |
5′, 3’End, Internal |
Spacer 9 |
HPLC |
5′, 3’End, Internal |
Spacer C12 |
HPLC |
5′, 3’End, Internal |
Spacer C3 |
HPLC |
5′, 3’End, Internal |
Spacer C18 |
HPLC |
5′, 3’End, Internal |
D Spacer |
HPLC |
5′, 3’End, Internal |
Attachment moieties:
A primary amino group or a thiol group can be used to attach a variety of modifiers (such as fluorescent dyes) to an oligonucleotide or used to attach an oligonucleotide to a solid surface.
Label Name |
Purifications |
Positions |
5’-Amino-Modifier-C6 |
HPLC |
5’End |
3’-Amino-Modifier-C7 |
HPLC |
3’End |
5’-Amino-Modifier-C12 |
HPLC |
5’End |
Thiol-Modifier C6 S-S |
HPLC |
5′, 3’End, Internal |
Thiol-Modifier-C3 S-S |
HPLC |
5′, 3’End, Internal |
TM increase
The stability of the DNA double helix depends on a fine balance of interactions including hydrogen bonds between bases, hydrogen bonds between bases and surrounding water molecules, and base-stacking interactions between adjacent bases. Slight variations in the DNA sequence can have profound implications on the stability of the DNA duplex.
Label Name |
Purifications |
Positions |
2’ OMe-rA |
PAGE |
5′, 3’End, Internal |
2’ OMe-rC |
PAGE |
5′, 3’End, Internal |
2’ OMe-rG |
PAGE |
5′, 3’End, Internal |
2’ OMe-rU |
PAGE |
5′, 3’End, Internal |