Custom DNA/RNA/Aptamers/ Oligos
We Specialize In
Customized DNA oligonucleotides for all kinds of applications – according to your specifications
CUSTOM OLIGO POOLS
Oligo Pools for accurate, reliable, and affordable CRISPR libraries; primer pools for multiplex PCR; gene construction; data storage; and FISH analysis.
These pools of custom single-stranded DNA sequences offer high fidelity, uniformity, low error rates, and low dropout rates.
This means that you can avoid amplification bias, varying concentrations, or high error rates that are often encountered when using pooled oligos from other suppliers.
We can provide custom oligo pools to your specification and required format. Our custom formatting capabilities have been optimized to provide complex formulations containing hundreds of oligos in a single pool.
Oligos pools can be provided in required amount in ODs and supplied in dry format.
Multiple aliquots of the oligo pool can be provided upon request. In addition to standard mixes, we specialize in preparing complex formulations containing varying amounts per oligo within the pool.
Simple oligo mixes can be provided in plates or tubes, complex formulations containing a large number of oligos will be provided in the appropriate tube based on the pool volume or the customers required format.

Advantages of Our Oligos synthesis
High-Quality: ISO 9001 & ISO 13485 quality certifications, extremely low mutation and low error rates, in accordance with the stringent quality control standards for oligo synthesis.
Good Stability: Unrivaled control of oligo specifications ensures batch-to-batch consistency and traceability.
Highly-Customizable: Flexible synthesis scales are available; four alternative purification options include: RPC, PAGE, and HPLC.
Technical Support: Professional teams experienced in oligo synthesis and various modifications offer support throughout the entire production progress.
Cost-Effective: Competitive prices and affordable services.
SPECIALIZED OLIGOS
NGS Oligos
Peptide-oligonucleotide conjugates
Complex Oligos
Large Scale Oligos
Oligo Aptamers

Unmodified DNA Oligo synthesis:
11-59nt |
Purification Method |
Synthesis Scale |
50 nmol |
100 nmol |
200 nmol |
1 μmol |
RPC |
Final Yield |
5 OD |
10 OD |
15 OD |
50 OD |
|
PAGE |
Final Yield |
– |
2 OD |
5 OD |
10 OD |
|
HPLC |
Final Yield |
– |
2 OD |
5 OD |
10 OD |
|
60-90nt |
RPC |
Final Yield |
5 OD |
10 OD |
15 OD |
50 OD |
PAGE |
Final Yield |
– |
2 OD |
5 OD |
10 OD |
|
HPLC |
Final Yield |
– |
2 OD |
5 OD |
10 OD |
* If you need other synthesis scale and lengths, please contact us for a quote.
*: Remember that the scale in nmol does NOT refer to the final yield of the oligo. It refers to the starting material for synthesis. FINAL yield is always measured in OD.
It is not always obvious to determine how many micrograms of oligos you may need for your assays. It is even more complicated to select the right synthesis scale.
How many reactions will I be able to do with 25 nmol PCR primers?
- Most PCR reactions use 0.1−0.5 μM primer. Assuming a maximum concentration of 0.5 μM and a reaction volume of 20 μL, each reaction will require 10 pmol oligonucleotide primer.
- For a typical 25mer oligonucleotide, 1 OD is equivalent to approximately 4 nmol, or 4000 pmol. Guaranteed yield for a 20 base PCR primer on the 25 nmol scale is 12 nmol.
- Therefore, with even the minimum yield from a 25 nmol synthesis, you should be able to perform 1200 PCR reactions.
- In summary: minimum guarantee for a 20mer ≈ 12 nmol = 12,000 pmol = 1200 reactions.

Custom DNA Oligos Modifications
Fluorescent Dyes Labels
The most important fluorescent compounds used to label oligonucleotides are fluorescein and various fluorescein analogs. Fluorescein is a multi-ring aromatic compound that is strongly fluorescent.
* The fluorescent color was calculated with the maximum emission wavelength, for your reference only.
Label Name |
Purifications |
Positions |
Excitation
|
Emission
|
Cy3 |
HPLC |
5′, 3’End |
549 |
566 |
Cy5 |
HPLC |
5′, 3’End |
646 |
669 |
FAM |
HPLC |
5′, 3’End |
495 |
520 |
HEX |
HPLC |
5’End |
535 |
556 |
TET |
HPLC |
5’End |
521 |
536 |
FITC |
HPLC |
5′, 3’End |
492 |
515 |
6-JOE |
HPLC |
5′, 3’End |
529 |
555 |
ROX |
HPLC |
5′, 3’End |
586 |
610 |
TAMRA |
HPLC |
5′, 3’End |
557 |
583 |
Helix Fluor555 |
HPLC |
5′, 3’End |
542 |
558 |
Helix Fluor575 |
HPLC |
5′, 3’End |
546 |
575 |
Texas Red |
HPLC |
5′, 3’End |
588 |
601 |
Quasar 570 |
HPLC |
5′, 3’End |
548 |
566 |
Quasar 670 |
HPLC |
5′, 3’End |
647 |
670 |
Cy3.5 |
HPLC |
5′, 3’End |
581 |
596 |
Cy5.5NS |
HPLC |
5′, 3’End |
678 |
701 |
Cy7NS |
HPLC |
5′, 3’End |
750 |
780 |
CAL Fluor Red 590 |
HPLC |
5′, 3’End |
569 |
591 |
CAL Fluor Red 610 |
HPLC |
5′, 3’End |
590 |
610 |
DABCYL |
HPLC |
5′, 3’End |
453 |
0 |
AMCA |
HPLC |
5′, 3’End |
353 |
455 |
DEAC |
HPLC |
5′, 3’End |
411 |
471 |
MCA |
HPLC |
5′, 3’End |
322 |
390 |
LRB Red |
HPLC |
5′, 3’End |
568 |
583 |
CR6G |
HPLC |
5′, 3’End |
524 |
556 |
Bodi Fluor R6G |
HPLC |
5′, 3’End |
528 |
547 |
NBD-X |
HPLC |
5′, 3’End |
467 |
539 |
California Red |
HPLC |
5′, 3’End |
583 |
603 |
iFluor™ 647 |
HPLC |
5′, 3’End |
649 |
664 |
iFluor™ 660 |
HPLC |
5′, 3’End |
662 |
678 |
iFluor™ 680 |
HPLC |
5′, 3’End |
676 |
695 |
iFluor™ 700 |
HPLC |
5′, 3’End |
685 |
710 |
iFluor™ 710 |
HPLC |
5′, 3’End |
712 |
736 |
iFluor™ 750 |
HPLC |
5′, 3’End |
749 |
775 |
iFluor™ 800 |
HPLC |
5′, 3’End |
801 |
820 |
VIC |
HPLC |
5’End |
538 |
554 |
LC RED-610 |
HPLC |
3’End |
590 |
610 |
LC RED-640 |
HPLC |
3’End |
625 |
640 |
LC RED-705 |
HPLC |
3’End |
685 |
705 |
Bodipy 493/503 |
HPLC |
3’End |
493 |
503 |
Bodipy 564/570 |
HPLC |
3’End |
564 |
570 |
Bodipy 581/591 |
HPLC |
3’End |
581 |
591 |
Bodipy 630/650 |
HPLC |
3’End |
630 |
650 |
Bodipy 650/665 |
HPLC |
3’End |
650 |
665 |
BODIPY R6G |
HPLC |
3’End |
528 |
547 |
SIMA |
HPLC |
5’End |
533 |
557 |
Yakima Yellow Epoch |
HPLC |
5′, 3’End |
530 |
549 |
Dual Labels
Dual-labeled fluorescent probes typically contain a 5′ fluorophore and a 3′ quencher. The probes are often designed to anneal between the upstream and the downstream primer in a PCR reaction. These are commonly used with quantitative PCR, mutation detection, allele determination, and SNP detection.
Label Name |
Purifications |
Positions |
5’FAM-3’TAMRA |
HPLC |
5′, 3’End |
5’HEX-3’TAMRA |
HPLC |
5′, 3’End |
5’TET-3’TAMRA |
HPLC |
5′, 3’End |
5’JOE-3’TAMRA |
HPLC |
5′, 3’End |
5’VIC-3’TAMRA |
HPLC |
5′, 3’End |
5’FAM-3’BHQ1 |
HPLC |
5′, 3’End |
5’VIC-3’BHQ1 |
HPLC |
5′, 3’End |
5’HEX-3’BHQ1 |
HPLC |
5′, 3’End |
5’JOE-3’BHQ1 |
HPLC |
5′, 3’End |
5’TET-3’BHQ-1 |
HPLC |
5′, 3’End |
5’Cy5-3’BHQ2 |
HPLC |
5′, 3’End |
5’Cy3-3’BHQ2 |
HPLC |
5′, 3’End |
5’ROX-3’BHQ2 |
HPLC |
5′, 3’End |
5’TET-3’BHQ2 |
HPLC |
5′, 3’End |
5’JOE-3’BHQ2 |
HPLC |
5′, 3’End |
5’HEX-3’BHQ2 |
HPLC |
5′, 3’End |
5’TAMRA-3’BHQ2 |
HPLC |
5′, 3’End |
5’Texas Red-3’BHQ2 |
HPLC |
5′, 3’End |
5’Quasar 670-3’BHQ2 |
HPLC |
5′, 3’End |
5′-FAM and 3′-BHQ2 |
HPLC |
5′, 3’End |
5’Quasar 670-3’BHQ3 |
HPLC |
5′, 3’End |
5’CY5-3’BHQ3 |
HPLC |
5′, 3’End |
5’FAM-3’ECLIPS |
HPLC |
5′, 3’End |
5’HEX-3′ ECLIPS |
HPLC |
5′, 3’End |
5’TAMRA-3’Eclipse |
HPLC |
5′, 3’End |
5’ROX-3’Eclipse |
HPLC |
5′, 3’End |
5’TET-3’Eclipse |
HPLC |
5′, 3’End |
5’JOE-3’Eclipse |
HPLC |
5′, 3’End |
5’FAM-3’MGB |
HPLC |
5′, 3’End |
5’HEX-3’MGB |
HPLC |
5′, 3’End |
5’TET-3’MGB |
HPLC |
5′, 3’End |
5’JOE-3’MGB |
HPLC |
5′, 3’End |
5’ROX-3’MGB |
HPLC |
5′, 3’End |
5’Texas Red-3’MGB |
HPLC |
5′, 3’End |
5’Quasar 670-3’MGB |
HPLC |
5′, 3’End |
5’VIC-3’MGB |
HPLC |
5′, 3’End |
5’FAM-3’DABCYL |
HPLC |
5′, 3’End |
5’HEX-3’DABCYL |
HPLC |
5′, 3’End |
5’TET-3’DABCYL |
HPLC |
5′, 3’End |
5’JOE-3’DABCYL |
HPLC |
5′, 3’End |
5’TAMRA-3’DABCYL |
HPLC |
5′, 3’End |
5’Texas Red-3’Dabcyl |
HPLC |
5′, 3’End |
5’ROX-3’Dabcyl |
HPLC |
5′, 3’End |
5’CY3-3’DABCYL |
HPLC |
5′, 3’End |
5’Cy5-3’DABCYL |
HPLC |
5′, 3’End |
5’Phos and 3’FAM |
HPLC |
5′, 3’End |
5’TAMRA and 3’Phos |
HPLC |
5′, 3’End |
5’C6-Biotin,3’Biotin |
HPLC |
5′, 3’End |
5’C6-Biotin,3’Cy5 |
HPLC |
5′, 3’End |
5’C6-NH2,3’C3-Fam |
HPLC |
5′, 3’End |
5’C6-NH2,3’Cy3 |
HPLC |
5′, 3’End |
5’Cy5,SS, |
HPLC |
5′, 3’End |
5’Cy5,3’C7-NH2 |
HPLC |
5′, 3’End |
5’Cy5,3’SH |
HPLC |
5′, 3’End |
5’Dabcyl,3’C3-Fam |
HPLC |
5′, 3’End |
5’DlG,3’Digoxin |
HPLC |
5′, 3’End |
5’SH,3’Cy3 |
HPLC |
5′, 3’End |
5’Fam,3’C3-Fam |
HPLC |
5′, 3’End |
5’TAMRA,3’C3-Fam |
HPLC |
5′, 3’End |
Quenchers:
FRET quenching depends on the ability of the fluorophore to transfer energy to the quencher. For this to happen, the emission spectrum of the fluorophore must overlap with the absorption spectrum of the quencher. For a quencher to quench fluorescence from several different fluorophores, it must therefore have a wide absorption spectrum and a high extinction coefficient.
Label Name |
Purifications |
Positions |
DABCYL |
HPLC |
3’End |
TAMRA |
HPLC |
3’End |
BHQ 1 |
HPLC |
3’End |
BHQ 2 |
HPLC |
3’End |
BHQ 3 |
HPLC |
3’End |
MGB |
HPLC |
3’End |
BBQ-650 |
HPLC |
3’End |
TQ1 |
HPLC |
3’End |
TQ2 |
HPLC |
3’End |
TQ3 |
HPLC |
3’End |
TQ4 |
HPLC |
3’End |
TQ5 |
HPLC |
3’End |
TQ6 |
HPLC |
3’End |
QSY 7 carboxylic acid |
HPLC |
3’End |
TQ7 |
HPLC |
3’End |
Affinity Ligands:
Oligo nucleotides can be labeled with biotin or digoxigenin or directly labeled with alkaline phosphatase. A variety of linker arms are available as spacers to minimize steric hindrance.
Label Name |
Purifications |
Positions |
Biotin dT |
HPLC |
5′, 3’End, Internal |
Biotin |
HPLC |
5′, 3’End, Internal |
Biotin-TEG |
HPLC |
5′, 3’End, Internal |
DIG |
HPLC |
5′, 3’End |
Spacers:
Spacer modifications C3, 9, C12 and 18 are used to insert a spacer arm in an oligonucleotide. These modifications can be added in multiple additions when a longer spacer is required.
Label Name |
Purifications |
Positions |
Spacer C6 |
HPLC |
5′, 3’End, Internal |
Spacer 9 |
HPLC |
5′, 3’End, Internal |
Spacer C12 |
HPLC |
5′, 3’End, Internal |
Spacer C3 |
HPLC |
5′, 3’End, Internal |
Spacer C18 |
HPLC |
5′, 3’End, Internal |
D Spacer |
HPLC |
5′, 3’End, Internal |
Attachment moieties:
A primary amino group or a thiol group can be used to attach a variety of modifiers (such as fluorescent dyes) to an oligonucleotide or used to attach an oligonucleotide to a solid surface.
Label Name |
Purifications |
Positions |
5’-Amino-Modifier-C6 |
HPLC |
5’End |
3’-Amino-Modifier-C7 |
HPLC |
3’End |
5’-Amino-Modifier-C12 |
HPLC |
5’End |
Thiol-Modifier C6 S-S |
HPLC |
5′, 3’End, Internal |
Thiol-Modifier-C3 S-S |
HPLC |
5′, 3’End, Internal |
TM increase
The stability of the DNA double helix depends on a fine balance of interactions including hydrogen bonds between bases, hydrogen bonds between bases and surrounding water molecules, and base-stacking interactions between adjacent bases. Slight variations in the DNA sequence can have profound implications on the stability of the DNA duplex.
Label Name |
Purifications |
Positions |
2’ OMe-rA |
PAGE |
5′, 3’End, Internal |
2’ OMe-rC |
PAGE |
5′, 3’End, Internal |
2’ OMe-rG |
PAGE |
5′, 3’End, Internal |
2’ OMe-rU |
PAGE |
5′, 3’End, Internal |