Custom DNA/RNA/Aptamers/ Oligos
Custom DNA Oligonucleotides
Tailored to Your Specifications
At Bionics, we offer a wide range of custom DNA oligonucleotides to meet your research needs. Our oligos can be tailored to your exact specifications, with options for modifications, scales, and lengths. With our high-quality synthesis and guaranteed yields, you can trust that your custom oligos will be delivered on time and to your exact specifications.
Request a QuoteCUSTOM OLIGO POOLS FOR ACCURATE & AFFORDABLE RESEARCH
At Bionics, we provide custom oligo pools that offer high fidelity, uniformity, low error rates, and low dropout rates, making them ideal for accurate and reliable CRISPR libraries, primer pools for multiplex PCR, gene construction, data storage, and FISH analysis.

ADVANTAGES OF OUR OLIGOS SYNTHESIS
- High Quality: Our oligos come with ISO 9001 & ISO 13485 quality certifications, extremely low mutation, and low error rates, in accordance with the stringent quality control standards for oligo synthesis.
- Good Stability: We ensure unrivalled control of oligo specifications that guarantee batch-to-batch consistency and traceability.
- Highly Customizable: We offer flexible synthesis scales and four alternative purification options, including RPC, PAGE, and HPLC, to cater to our clients’ specific needs.
- Technical Support: Our professional teams experienced in oligo synthesis and various modifications provide support throughout the entire production process.
- Cost-Effective: We offer competitive prices and affordable services that do not compromise the quality of our products.
CUSTOM FORMATTING CAPABILITIES
Our custom formatting capabilities have been optimized to provide complex formulations containing hundreds of oligos in a single pool, which can be provided in the required amount in ODs and supplied in dry format. Multiple aliquots of the oligo pool can be provided upon request. In addition to standard mixes, we specialize in preparing complex formulations containing varying amounts per oligo within the pool. Simple oligo mixes can be provided in plates or tubes, and complex formulations containing a large number of oligos will be provided in the appropriate tube based on the pool volume or the customers required format.
SPECIALIZED OLIGOS
In addition to our custom oligo pools, we also offer specialized oligos, including NGS oligos, peptide-oligonucleotide conjugates, complex oligos, large-scale oligos, and oligo aptamers, to cater to various research needs.
Unmodified DNA Oligo synthesis:
Length | Purification Method | |||
---|---|---|---|---|
RPC | PAGE | HPLC | ||
11-59nt | Final Yield (5 OD) | Final Yield (2 OD) | Final Yield (2 OD) | Final Yield (50 OD) |
50 nmol | – | – | – | |
100 nmol | 2 OD | 2 OD | 5 OD | |
200 nmol | 5 OD | 5 OD | 10 OD | |
1 μmol | 50 OD | 10 OD | 10 OD | |
60-90nt | Final Yield (5 OD) | Final Yield (2 OD) | Final Yield (2 OD) | Final Yield (50 OD) |
50 nmol | – | – | – | |
100 nmol | 2 OD | 2 OD | 5 OD | |
200 nmol | 5 OD | 5 OD |
Custom Synthesis Scales
We understand that every project is unique. That’s why we offer custom synthesis scales and lengths to suit your specific needs. Please don’t hesitate to contact us for a quote.
Please Note:
- The scale in nmol refers to the starting material for synthesis, not the final yield of the oligo.
- The final yield is always measured in OD.
- We understand that determining the appropriate amount of oligos needed for your assays can be challenging, and selecting the correct synthesis scale can be even more complex.
PCR Primer Quantity Calculator
How many reactions can you do with 25 nmol PCR primers?
To determine how many PCR reactions you can do with 25 nmol PCR primers, consider the following:
css Copy code- Most PCR reactions use 0.1−0.5 μM primer. Assuming a maximum concentration of 0.5 μM and a reaction volume of 20 μL, each reaction will require 10 pmol oligonucleotide primer.
- For a typical 25mer oligonucleotide, 1 OD is equivalent to approximately 4 nmol, or 4000 pmol. Guaranteed yield for a 20 base PCR primer on the 25 nmol scale is 12 nmol.
- Therefore, with even the minimum yield from a 25 nmol synthesis, you should be able to perform 1200 PCR reactions.
In summary: minimum guarantee for a 20mer ≈ 12 nmol = 12,000 pmol = 1200 reactions.
Custom DNA Oligos with Modifications
Bionics offers a wide range of custom DNA oligos with modifications to meet your research needs. Our modifications include, but are not limited to:
- Fluorescent dyes and quenchers
- Phosphorothioates
- Biotin
- And many more!
Contact us today to request a quote or to learn more about our custom DNA oligo services.
Custom DNA Oligos Modifications
Fluorescent Dyes Labels
The most important fluorescent compounds used to label oligonucleotides are fluorescein and various fluorescein analogs. Fluorescein is a multi-ring aromatic compound that is strongly fluorescent. * The fluorescent color was calculated with the maximum emission wavelength, for your reference only.Label Name | Purifications | Positions | Excitation Maximum (nm) | Emission Maximum (nm) |
Cy3 | HPLC | 5′, 3’End | 549 | 566 |
Cy5 | HPLC | 5′, 3’End | 646 | 669 |
FAM | HPLC | 5′, 3’End | 495 | 520 |
HEX | HPLC | 5’End | 535 | 556 |
TET | HPLC | 5’End | 521 | 536 |
FITC | HPLC | 5′, 3’End | 492 | 515 |
6-JOE | HPLC | 5′, 3’End | 529 | 555 |
ROX | HPLC | 5′, 3’End | 586 | 610 |
TAMRA | HPLC | 5′, 3’End | 557 | 583 |
Helix Fluor555 | HPLC | 5′, 3’End | 542 | 558 |
Helix Fluor575 | HPLC | 5′, 3’End | 546 | 575 |
Texas Red | HPLC | 5′, 3’End | 588 | 601 |
Quasar 570 | HPLC | 5′, 3’End | 548 | 566 |
Quasar 670 | HPLC | 5′, 3’End | 647 | 670 |
Cy3.5 | HPLC | 5′, 3’End | 581 | 596 |
Cy5.5NS | HPLC | 5′, 3’End | 678 | 701 |
Cy7NS | HPLC | 5′, 3’End | 750 | 780 |
CAL Fluor Red 590 | HPLC | 5′, 3’End | 569 | 591 |
CAL Fluor Red 610 | HPLC | 5′, 3’End | 590 | 610 |
DABCYL | HPLC | 5′, 3’End | 453 | 0 |
AMCA | HPLC | 5′, 3’End | 353 | 455 |
DEAC | HPLC | 5′, 3’End | 411 | 471 |
MCA | HPLC | 5′, 3’End | 322 | 390 |
LRB Red | HPLC | 5′, 3’End | 568 | 583 |
CR6G | HPLC | 5′, 3’End | 524 | 556 |
Bodi Fluor R6G | HPLC | 5′, 3’End | 528 | 547 |
NBD-X | HPLC | 5′, 3’End | 467 | 539 |
California Red | HPLC | 5′, 3’End | 583 | 603 |
iFluor™ 647 | HPLC | 5′, 3’End | 649 | 664 |
iFluor™ 660 | HPLC | 5′, 3’End | 662 | 678 |
iFluor™ 680 | HPLC | 5′, 3’End | 676 | 695 |
iFluor™ 700 | HPLC | 5′, 3’End | 685 | 710 |
iFluor™ 710 | HPLC | 5′, 3’End | 712 | 736 |
iFluor™ 750 | HPLC | 5′, 3’End | 749 | 775 |
iFluor™ 800 | HPLC | 5′, 3’End | 801 | 820 |
VIC | HPLC | 5’End | 538 | 554 |
LC RED-610 | HPLC | 3’End | 590 | 610 |
LC RED-640 | HPLC | 3’End | 625 | 640 |
LC RED-705 | HPLC | 3’End | 685 | 705 |
Bodipy 493/503 | HPLC | 3’End | 493 | 503 |
Bodipy 564/570 | HPLC | 3’End | 564 | 570 |
Bodipy 581/591 | HPLC | 3’End | 581 | 591 |
Bodipy 630/650 | HPLC | 3’End | 630 | 650 |
Bodipy 650/665 | HPLC | 3’End | 650 | 665 |
BODIPY R6G | HPLC | 3’End | 528 | 547 |
SIMA | HPLC | 5’End | 533 | 557 |
Yakima Yellow Epoch | HPLC | 5′, 3’End | 530 | 549 |
Dual Labels
Dual-labeled fluorescent probes typically contain a 5′ fluorophore and a 3′ quencher. The probes are often designed to anneal between the upstream and the downstream primer in a PCR reaction. These are commonly used with quantitative PCR, mutation detection, allele determination, and SNP detection.Label Name | Purifications | Positions |
5’FAM-3’TAMRA | HPLC | 5′, 3’End |
5’HEX-3’TAMRA | HPLC | 5′, 3’End |
5’TET-3’TAMRA | HPLC | 5′, 3’End |
5’JOE-3’TAMRA | HPLC | 5′, 3’End |
5’VIC-3’TAMRA | HPLC | 5′, 3’End |
5’FAM-3’BHQ1 | HPLC | 5′, 3’End |
5’VIC-3’BHQ1 | HPLC | 5′, 3’End |
5’HEX-3’BHQ1 | HPLC | 5′, 3’End |
5’JOE-3’BHQ1 | HPLC | 5′, 3’End |
5’TET-3’BHQ-1 | HPLC | 5′, 3’End |
5’Cy5-3’BHQ2 | HPLC | 5′, 3’End |
5’Cy3-3’BHQ2 | HPLC | 5′, 3’End |
5’ROX-3’BHQ2 | HPLC | 5′, 3’End |
5’TET-3’BHQ2 | HPLC | 5′, 3’End |
5’JOE-3’BHQ2 | HPLC | 5′, 3’End |
5’HEX-3’BHQ2 | HPLC | 5′, 3’End |
5’TAMRA-3’BHQ2 | HPLC | 5′, 3’End |
5’Texas Red-3’BHQ2 | HPLC | 5′, 3’End |
5’Quasar 670-3’BHQ2 | HPLC | 5′, 3’End |
5′-FAM and 3′-BHQ2 | HPLC | 5′, 3’End |
5’Quasar 670-3’BHQ3 | HPLC | 5′, 3’End |
5’CY5-3’BHQ3 | HPLC | 5′, 3’End |
5’FAM-3’ECLIPS | HPLC | 5′, 3’End |
5’HEX-3′ ECLIPS | HPLC | 5′, 3’End |
5’TAMRA-3’Eclipse | HPLC | 5′, 3’End |
5’ROX-3’Eclipse | HPLC | 5′, 3’End |
5’TET-3’Eclipse | HPLC | 5′, 3’End |
5’JOE-3’Eclipse | HPLC | 5′, 3’End |
5’FAM-3’MGB | HPLC | 5′, 3’End |
5’HEX-3’MGB | HPLC | 5′, 3’End |
5’TET-3’MGB | HPLC | 5′, 3’End |
5’JOE-3’MGB | HPLC | 5′, 3’End |
5’ROX-3’MGB | HPLC | 5′, 3’End |
5’Texas Red-3’MGB | HPLC | 5′, 3’End |
5’Quasar 670-3’MGB | HPLC | 5′, 3’End |
5’VIC-3’MGB | HPLC | 5′, 3’End |
5’FAM-3’DABCYL | HPLC | 5′, 3’End |
5’HEX-3’DABCYL | HPLC | 5′, 3’End |
5’TET-3’DABCYL | HPLC | 5′, 3’End |
5’JOE-3’DABCYL | HPLC | 5′, 3’End |
5’TAMRA-3’DABCYL | HPLC | 5′, 3’End |
5’Texas Red-3’Dabcyl | HPLC | 5′, 3’End |
5’ROX-3’Dabcyl | HPLC | 5′, 3’End |
5’CY3-3’DABCYL | HPLC | 5′, 3’End |
5’Cy5-3’DABCYL | HPLC | 5′, 3’End |
5’Phos and 3’FAM | HPLC | 5′, 3’End |
5’TAMRA and 3’Phos | HPLC | 5′, 3’End |
5’C6-Biotin,3’Biotin | HPLC | 5′, 3’End |
5’C6-Biotin,3’Cy5 | HPLC | 5′, 3’End |
5’C6-NH2,3’C3-Fam | HPLC | 5′, 3’End |
5’C6-NH2,3’Cy3 | HPLC | 5′, 3’End |
5’Cy5,SS, | HPLC | 5′, 3’End |
5’Cy5,3’C7-NH2 | HPLC | 5′, 3’End |
5’Cy5,3’SH | HPLC | 5′, 3’End |
5’Dabcyl,3’C3-Fam | HPLC | 5′, 3’End |
5’DlG,3’Digoxin | HPLC | 5′, 3’End |
5’SH,3’Cy3 | HPLC | 5′, 3’End |
5’Fam,3’C3-Fam | HPLC | 5′, 3’End |
5’TAMRA,3’C3-Fam | HPLC | 5′, 3’End |
Quenchers:
FRET quenching depends on the ability of the fluorophore to transfer energy to the quencher. For this to happen, the emission spectrum of the fluorophore must overlap with the absorption spectrum of the quencher. For a quencher to quench fluorescence from several different fluorophores, it must therefore have a wide absorption spectrum and a high extinction coefficient.Label Name | Purifications | Positions |
DABCYL | HPLC | 3’End |
TAMRA | HPLC | 3’End |
BHQ 1 | HPLC | 3’End |
BHQ 2 | HPLC | 3’End |
BHQ 3 | HPLC | 3’End |
MGB | HPLC | 3’End |
BBQ-650 | HPLC | 3’End |
TQ1 | HPLC | 3’End |
TQ2 | HPLC | 3’End |
TQ3 | HPLC | 3’End |
TQ4 | HPLC | 3’End |
TQ5 | HPLC | 3’End |
TQ6 | HPLC | 3’End |
QSY 7 carboxylic acid | HPLC | 3’End |
TQ7 | HPLC | 3’End |
Affinity Ligands:
Oligo nucleotides can be labeled with biotin or digoxigenin or directly labeled with alkaline phosphatase. A variety of linker arms are available as spacers to minimize steric hindrance.Label Name | Purifications | Positions |
Biotin dT | HPLC | 5′, 3’End, Internal |
Biotin | HPLC | 5′, 3’End, Internal |
Biotin-TEG | HPLC | 5′, 3’End, Internal |
DIG | HPLC | 5′, 3’End |
Spacers:
Spacer modifications C3, 9, C12 and 18 are used to insert a spacer arm in an oligonucleotide. These modifications can be added in multiple additions when a longer spacer is required.Label Name | Purifications | Positions |
Spacer C6 | HPLC | 5′, 3’End, Internal |
Spacer 9 | HPLC | 5′, 3’End, Internal |
Spacer C12 | HPLC | 5′, 3’End, Internal |
Spacer C3 | HPLC | 5′, 3’End, Internal |
Spacer C18 | HPLC | 5′, 3’End, Internal |
D Spacer | HPLC | 5′, 3’End, Internal |
Attachment moieties:
A primary amino group or a thiol group can be used to attach a variety of modifiers (such as fluorescent dyes) to an oligonucleotide or used to attach an oligonucleotide to a solid surface.Label Name | Purifications | Positions |
5’-Amino-Modifier-C6 | HPLC | 5’End |
3’-Amino-Modifier-C7 | HPLC | 3’End |
5’-Amino-Modifier-C12 | HPLC | 5’End |
Thiol-Modifier C6 S-S | HPLC | 5′, 3’End, Internal |
Thiol-Modifier-C3 S-S | HPLC | 5′, 3’End, Internal |
TM increase
The stability of the DNA double helix depends on a fine balance of interactions including hydrogen bonds between bases, hydrogen bonds between bases and surrounding water molecules, and base-stacking interactions between adjacent bases. Slight variations in the DNA sequence can have profound implications on the stability of the DNA duplex.Label Name | Purifications | Positions |
2’ OMe-rA | PAGE | 5′, 3’End, Internal |
2’ OMe-rC | PAGE | 5′, 3’End, Internal |
2’ OMe-rG | PAGE | 5′, 3’End, Internal |
2’ OMe-rU | PAGE | 5′, 3’End, Internal |